

Ashley C. Karp, PhD

Jet Propulsion Laboratory, California Institute of Technology Stanford AA 108N Lecture 23 Jan 2018

© 2018 California Institute of Technology. Government sponsorship acknowledged.

Surviving Space: Propulsion

Propulsion – how you get where you're going.

Propulsion Imparts loads on spacecraft

Components must be designed to survive environment

Test like you fly

My Path to JPL

A.B./B.A. in Astrophysics, Physics Political Science, '05

- Majors: astrophysics, physics, political science
- Research: Infrared Spatial Interferometer
 - Prof. Charles Townes

Ph.D. in Aeronautics and Astronautics, '12 (and M.S. '09)

- Thesis: An Investigation of Liquefying Hybrid Rocket Fuels with Applications to Solar System Exploration
 - Profs. Brian Cantwell & Scott Hubbard
 - Two summer internships at JPL ('08, '11)

What does a Propulsion Engineer do?

Image: NASA

Changing velocity allows you to change or escape orbit. It's how we move around in space.

Cartoon Subway map of the solar system

Examples of how to get ΔV

Rockets

Gravity Assist

Aerodynamics (Drag)

Solar Sails

ΔV con't

ACS, formation, etc.

Primary

- Launch
- Orbit Insertion
- Orbit Change
- Descent/Landing

Secondary

- Attitude Control (ACS)
- Station Keeping
- Formation Flying

Use for both up and down.

New Shepherd, Blue Origin

Newton's Second Law

*Neglect aerodynamic forces for now

$$\Sigma F = (p_e - p_o)A_e - mg_0\cos\theta$$

$$\frac{dp}{dt} = \frac{d(mu)}{dt} + \frac{dm_e}{dt}(u + u_e)$$

$$\frac{dp}{dt} = m\frac{du}{dt} - u_e \frac{dm}{dt}$$

The Rocket Equation

 Derive from conservation of momentum (assume no external forces, perfectly expanded nozzle)

$$\Delta V = Isp \ g_0 \ln \left(\frac{m_i}{m_f}\right)$$

$$u_e = Ispg_0$$

Effective exhaust velocity Also often called "c"

Propellant Mass

Table 14-18. Average Mass by Subsystem as a Percentage of Dry Mass for 4 Types of Spacecraft. Types include those with no propulsion, those in Low-Earth Orbit with propulsion, those in high-Earth orbit, and planetary missions. See App. A for more information.

Source: Wertz and Larson, The New SMAD

Subsystem (% of Dry Mass)	No Prop	LEO with Prop	High Earth	Planetary
Payload	41%	31%	32%	15%
Structure and Mechanisms	20%	27%	24%	25%
Thermal Control	2%	2%	4%	6%
Power (incl. harness)	19%	21%	17%	21%
TT&C	2%	2%	4%	7%
On-Board Processing	5%	5%	3%	4%
Attitude Determination and Control	8%	6%	6%	6%
Propulsion	0%	3%	7%	13%
Other (balance + launch)	3%	3%	3%	3%
Total	100%	100%	100%	100%
Propellant ©2011 Microcosm Inc.	0%	27%	72%	110%

Propellant can be a large percentage of spacecraft mass

Example: LRC

- Lunar Reconnaissance Orbiter
- 4 x 88N Insertion thrusters
- 8 x 20N ACS thrusters

Source: IAC-07-C1.7.06

Fuel Budget

 Table 14-19. Lunar Reconnaissance Orbiter Fuel Budget at Launch. (Courtesy of Charles Zakrzwski)

Total Launch Mass (kg)	1915.27				
	Delta V	Effective I _{SP}	Total Propellant Used for Maneuver		
Maneuvers	(m/s)	(s)	(ka)	(ka)	(ka)

Maneuvers	Delta V (m/s)	Effective I _{SP} (s)	Total Propellant Used for Maneuver (kg)	Delta H Propellant (kg)	Total Propellant Used (kg)	S/C Mass at End of Burn (kg)
MCC Eng	2	202	1.93	0	1.93	1,913
MCC Burn(s)	28	202	26.85	0	26.85	1,886
Thruster Check Out				0	0.23	1,886
LOI Eng	8	223.6	6.87	0	6.87	1,879
LOI – 1	583	223.6	438.64	0	438.64	1,441
LOI – 2-5	362	220	222.48	0	222.48	1,218
MOI – 1	48	220	26.80	0	26.80	1,191
MOI – Others	8	217	4.47	0	4.47	1,187
Station Keeping	162	217	86.98	0	86.98	1,100
Momentum Unloading	14	Na		17	17.00	1,083
Extended Mission	69	217	34.54		34.54	1,048
Additional Margin	46	217	22.41	0	22.41	1,026
Totals	1316		©20	11 Microcosm Inc.	889.20 ←	

Launch mass: Dry mass (1017.7 kg) Residuals (5.2 kg) Helium (3.2 kg) -Tot = 1026 kg

Usable propellant = 889.20 kg

Legend:

MCC – mid-course correction

LOI – lunar orbit insertion

MOI – mission orbit insertion

Source: Wertz and Larson, The New SMAD

Propulsion Design Minimizing Mass

- Considerations
 - Isp or C ($u_e = C = I_{sp} g_0$)
 - Dry mass
 - Propulsion system requirements (temperatures, power, plumbing, etc.)
 - Mission requirements
 - Thrust, throttling, multiple burns, etc.

$$\Delta V = Isp \ g_0 \ln \left(\frac{m_i}{m_f}\right)$$

$$\Delta V = Isp \ g_0 \ln \left(\frac{m_L + m_P + m_S}{m_L + m_S}\right)$$

$$m_P = m_f (e^{\Delta V/Isp \ g_0} - 1)$$

Prop System	Typical Isp
Cold Gas	70
Monoprop	240
Biprop (storable)	320
Biprop (cryogenic)	450
Solid	285
Hybrid	330

Example

- You want to perform a LEO → GEO transfer
 - $-\Delta V_{Chem} \sim 4 \text{ km/s}$
- Estimate the propellant mass you need for a thruster with lsp ~ 70 s (cold gas), vs. a liquid bipropellant lsp ~ 320 s
 - Assume your final mass is 50 kg (payload plus structure and residuals)
- Which would you use?

Example

- You want to perform a LEO → GEO transfer
 - $-\Delta V_{Chem} \sim 4 \text{ km/s}$
- Estimate the propellant mass you need for a thruster with lsp ~ 70 s (cold gas), vs. a liquid bipropellant lsp ~ 320 s
 - Assume your final mass is 50 kg (payload plus structure and residuals)
- Which would you use?

$$\Delta V = Isp \ g_0 \ln \left(\frac{m_i}{m_f}\right)$$

Types of Chemical Propulsion

	Cold Gas	Mono- propellant	Bipropellant Liquid	Solid	Hybrid
Example					
	Triad Thruster, Moog	MR-111, Aerojet Rocketdyne	Merlin Engine, SpaceX	Star 48, Orbital ATK	RocketMotor- Two, VirginGalactic
Uses	ACS	RCS, ACS, Small Main Engines	Launch, Orbit Insertion	Boosters, Insertion Burns	TBD: Tourism, CubeSats, MAV?

Cold Gas Thruster

- Pressurized gas expands through a nozzle
- Common propellants:
 - N₂, He, Freon, Ammonia
- Advantages
 - Simple
 - Many Commercial Off The Shelf (COTS) components and systems available
 - Propellants are typically safe (non-toxic)
- Disadvantages
 - Low Isp
 - Very sensitive to valve timing
 - Temperature of gas can lead to condensation in the nozzle

Monopropellant

- Catalytic decomposition
- Monopropellants:
 - Hydrazine (N₂H₄)
 - Nitrous Oxide (N₂O)
 - Hydroxylammonium nitrate, HAN (H₄N₂O₄)
 - LMP-103 (ammonium dinitramide, ADN)
- Advantages
 - Simple, COTS, easy to throttle
- Disadvantages
 - Catalyst is hard to make and heavy
 - Most propellants are toxic

MR-103 1N (0.2 lbf)

400-3000N

Liquid Bipropellant

- Advantages
 - High performance (Isp)
 - Throttleable (but complex)
 - Restartable
- Disadvantages
 - Complex
 - Low Density
 - High performance propellants can be cryogenic

Merlin Engine (845-914kN)

Example: Cassini (Saturn)

- Cassini-Huygens is a NASA/ESA/ASI mission that was designed to explore the Saturn system, including its rings and moons, with a special focus on Titan. It "plunged" into Saturn last year.
 - It took 6.7 years to get to Saturn
 - Size: 6.8 m tall by 4 m wide
- Wet mass: 5,574 kg
- Main engines are storable biprop
 - MMH/NTO
 - $-M_p = 3,000 \text{ kg}$
- Hydrazine thrusters
 - Used for 3-axis attitude control and reaction wheel desaturation
 - $-M_{p} = 132 \text{ kg}$

What percentage of the total mass is propellant?

Solid Rocket Motor

Schematic Drawing of a Nominal Solid Motor

©2011 Microcosm SMF-0185-01-C

Advantages:

- High density propellants
- High thrust, can tailor thrust curve to some extent
- Low cost
- Simple and reliable
- Storable

Disadvantages:

- Low performance
- Safety/Toxic combustion products
- Extremely hard to throttle
- Thrust is propellant temperature dependent
- Cracks can lead to burn throughs or explosions
- Can't stop combustion once its started

Solid Rocket Motor

K: Empirical constantT₁: Empirical propellant detonation temperature

Empirical exponent

Regression rate is pressure and temperature dependent

$$\rho_p A_b \dot{r} = \frac{d}{dt} (\rho_c V_c) + \frac{A_t P_c}{C^*}$$

$$\dot{r} = \frac{K}{T_1 - T_p} (P_c)^r$$

Often written as a, an empirical constant that depends on temperature

Example: Orbital ATK's Star 8 Motor

Three of these Rocket Assisted Descent (RAD) motors were used to land Spirit and Opportunity on Mars

MOTOR DIMENSIONS Motor diameter, in
MOTOR PERFORMANCE (-22°F VACUUM) Burn time/action time, sec4.33/4.51
Ignition delay time, sec
Burn time average chamber pressure, psia1,500
Maximum chamber pressure, psia1,572
Total impulse, lbf-sec7,430
Propellant specific impulse, lbf-sec/lbm274.0
Effective specific impulse, lbf-sec/lbm272.9
Burn time average thrust, lbf
Maximum thrust, lbf1,742
NOZZLE
Initial throat diameter, in
Exit diameter, in4.095
Expansion ratio, initial21.7:1
Cant angle, deg17
WEIGHTS, LBM
Total loaded
Propellant27.12
Case assembly6.12
Nozzle assembly
Total inert
Burnout
Propellant mass fraction0.71
TEMPERATURE LIMITS
Operation40°-104°F
Storage65°-140°F
PROPELLANT DESIGNATIONTP-H-3062
CASE MATERIALTitanium
PRODUCTION STATUSFlight-proven

Hybrid Rockets

Classical Fuels

- Multi-port (wagon wheel)
- Diffusion limited regression rate
- e.g. HTPB

Liquefying Fuels

- Single-port
- High regression rate
- e.g. Paraffin

Classical Hybrid Combustion

High Regression Rate Fuels

Cantwell, Karabeyoglu, & Altman, 8th ISICP Cape Town, SA, 2009

Ashley Chandler, Ph.D. Dissertation, 2012

Example: Peregrine Sounding Rocket

- Objective: design, build, test, and fly a stable, efficient liquefying fuel hybrid rocket.
- Specs:
 - Paraffin-based fuel with Nitrous Oxide, Earth storable
 - Size: diameter of 15 in. (38.1 cm)
 - Thrust: 14,000-lb (62.3-kN)
- Check out one of the <u>hotfire tests</u> at NASA Ames.

Propulsion Summary

		Hybrid (Paraffin/GO ₂)	Solid	Liquid (ммн/ито)	Monoprop
Isp (Performance)		330 s	285 s	324 s	240 s
Rest	art capability	Yes, multiple	Yes, multiple N/A Yes, multiple		Yes, multiple
Thro	ttling	Simple, 10:1 None Complex, 3:1		Simple, 10:1	
Low temperature storage and operations		< -90 C (Predicted)	- 40 C	+13 C	+ 13 C
L/D Ratio		High	Low	Moderate	Moderate
	Toxicity	Nontoxic	Toxic	Toxic	Toxic
Safety	System Complexity	Moderate	Low	High	Moderate
	Recurring Cost	Low	Low	High	Moderate

Spacecraft Systems

- Propulsion system: you need more than a thruster, engine, or motor to get to (or around in) space.
 - Feed system for monoprops, liquid biprops and hybrids
 - Attitude Control System (ACS)/Reaction Control System (RCS)
 - Ignition if not catalytic or hypergolic
- Support structure
- Avionics/Telecom
- Payload

MSL: Seven Minutes of Terror

Powered Descent, Sky Crane & Flyaway

MSL Descent Stage

Baker et al., Journal of Spacecraft and Rockets, Vol. 51, No. 4 (2014), pp. 1217-1226.

Testing

- Acceptance vs. Qualification (vs. Protoflight)
- Functional/performance
- Proof and leak
- Environmental

Environments to Survive

Source: NASA

Environments to Survive

- Earth
 - Shipping to the launch site
 - Rocket launch
- Cruise
 - Inside aeroshell

- Entry Descent and Landing
 - Aerobreaking
 - Parachute
 - Divert Maneuver
 - Skycrane
- Mars Surface

Source: NASA

Types of Environments & Examples

- Thermal
 - Natural environment (max temperature is often at the Cape for launch, min on Mars can be <-100C)
 - Planetary Protection bake out
- Radiation (Mars: 8 rad/year per Mars Oddssey on average)
- Forces/accelerations rockets, parachutes, etc.
- Random Vibration
- Pyroshock

Example: M2020/MSL Regulator

- Modified for M2020/MSL from Shuttle
 - This hardware had already flown on shuttle and was modified for this application
- Acceptance and delta-qualification testing were conducted
 - Flow cycles, flow performance mapping, hot and cold inlet gases, hot and cold thermal
 - environments, solenoid valve slam starts, representative mission profiles, and flow mapping.
 - Pyrovalve shock
 - Random vibration

e S 0 n S

Image: NASA